Linear systems in Jordan algebras and primal-dual interior-point algorithms
نویسندگان
چکیده
منابع مشابه
Linear Systems in Jordan Algebras and Primal-dual Interior-point Algorithms
We discuss a possibility of the extension of a primal-dual interior-point algorithm suggested recently in 1]. We consider optimization problems deened on the intersection of a symmetric cone and an aane subspace. The question of solvability of a linear system arising in the implementation of the primal-dual algorithm is analyzed. A nondegeneracy theory for the considered class of problems is de...
متن کاملPrimal-dual entropy-based interior-point algorithms for linear optimization
We propose a family of search directions based on primal-dual entropy in the contextof interior-point methods for linear optimization. We show that by using entropy based searchdirections in the predictor step of a predictor-corrector algorithm together with a homogeneousself-dual embedding, we can achieve the current best iteration complexity bound for linear opti-mization. The...
متن کاملPrimal-dual interior-point methods
3. page 13, lines 12–13: Insert a phrase to stress that we consider only monotone LCP in this book, though the qualifier ”monotone” is often omitted. Replace the sentence preceding the formula (1.21) by The monotone LCP—the qualifier ”monotone” is implicit throughout this book—is the problem of finding vectors x and s in I R that satisfy the following conditions: 4. page 13, line −12: delete “o...
متن کاملInformation Geometry and Primal-Dual Interior-point Algorithms
In this paper, we study polynomial-time interior-point algorithms in view of information geometry. We introduce an information geometric structure for a conic linear program based on a self-concordant barrier function. Riemannian metric is defined with the Hessian of the barrier function. We introduce two connections ∇ and ∇∗ which roughly corresponds to the primal and the dual problem. The dua...
متن کاملMonotonicity of Primal and Dual Objective Values in Primal-dual Interior-point Algorithms
We study monotonicity of primal and dual objective values in the framework of primal-dual interior-point methods. The primal-dual aane-scaling algorithm is monotone in both objectives. We derive a condition under which a primal-dualinterior-point algorithm with a centering component is monotone. Then we propose primal-dual algorithms that are monotone in both primal and dual objective values an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1997
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(97)00153-2